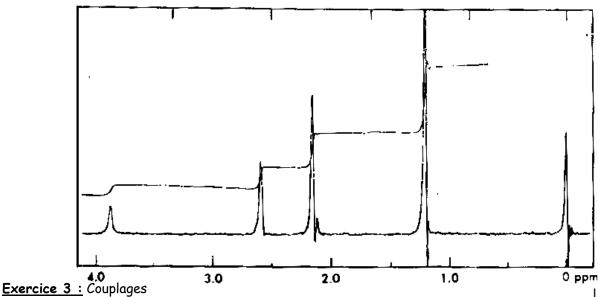
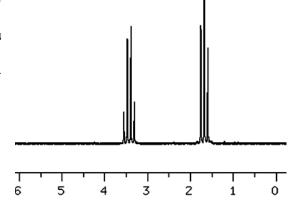
Exercice 1 : Protons équivalents (isochrones)


Dénombrer et identifier à l'aide d'indices a, b, c...les familles de protons équivalents (isochrones) dans les composés suivants :

- A. CH₄
- B. H₃C-CH₂-CH₃
- C. H_3C -CHO
- D. H₃C-CO-CH₃
- E. H₃C-CH₂-CO-CH₂-CH₃
- F. H₃C-CH₂-CHOH-CH₂-CH₃
- G. H₃C-CO-CH₂-CH₃
- H. HO-CH₂-CH₂-Cl
- I. $H_3C-CH_2-CO-O-CH=CH_2$

Exercice 2 : Spectre à singulets


On considère le spectre RMN du ¹H de la 4-hydroxy-4-méthylpentanone :

- 1. Citer les familles chimiques auxquelles appartient le composé étudié.
- 2. Donner sa formule semi-développée compacte.
- 3. Identifier sur cette dernière, à l'aide d'indices a, b, c et d, les familles de protons équivalents (isochrones).
- 4. Proposer alors une interprétation de son spectre RMN du ¹H, enregistré à 60 MHz par rapport au TMS (pic correspondent au signal à δ = 0,0 ppm).

- - 1. Rappeler la règle de multiplicité des (n+1) pics.
 - 2. On considère le bromure d'éthyle de formule H_3C-CH_2 -Br, identifier dans une formule semi-développée les protons équivalents (isochrones).
 - 3. Dans spectre RMN du ¹H du, donné ci-contre, donner le type ainsi que le déplacement chimique de chaque massif.
 - 4. Attribuer à chaque famille un signal en expliquant la multiplicité des signaux observés.
 - 5. Regrouper ces données dans un tableau (voir cidessous) donnant l'analyse complète du spectre.

δ (ppm)	Nature du sianal	Nombre de H éauivalents	Nombre de voisins	Remarque
			70707710	

